New Algorithms for Large-Scale Support Vector Machines. (Nouveaux Algorithmes pour l'Apprentissage de Machines à Vecteurs Supports sur de Grandes Masses de Données)
نویسنده
چکیده
Internet as well as all the modern media of communication, information and entertainment entails a massive increase of digital data quantities. In various domains ranging from network security, information retrieval, to online advertisement, or computational linguistics automatic methods are needed to organize, classify or transform terabytes of numerical items. Machine learning research concerns the design and development of algorithms that allow computers to learn based on data. A large number of accurate and efficient learning algorithms now exist and it seems rewarding to use them to automate more and more complex tasks, especially when humans have difficulties to handle large amounts of data. Unfortunately, most learning algorithms performs well on small databases but cannot be trained on large data quantities. Hence, there is a deep need for machine learning methods able to learn with millions of training instances so that they could enjoy the huge available data sources. We develop these issues in our introduction, in Chapter 1. In this thesis, we propose solutions to reduce training time and memory requirements of learning algorithms while keeping strong performances in accuracy. In particular, among all the machine learning models, we focus on Support Vector Machines (SVMs) that are standard methods mostly used for automatic classification. We extensively describe them in Chapter 2 Throughout this dissertation, we propose different original algorithms for learning SVMs, depending on the final task they are destined to. First, in Chapter 3, we study the learning process of Stochastic Gradient Descent for the particular case of linear SVMs. This leads us to define and validate the new SGD-QN algorithm. Then we introduce a brand new learning principle: the Process/Reprocess strategy. We present three algorithms implementing it. The Huller and LaSVM are discussed in Chapter 4. They are designed towards training SVMs for binary classification. For the more complex task of structured output prediction, we refine intensively LaSVM: this results in the LaRank algorithm which is detailed in Chapter 5. Finally, in Chapter 6 is introduced the original framework of learning under ambiguous supervision which we apply to the task of semantic parsing of natural language. Each algorithm introduced in this thesis achieves state-of-the-art performances, especially in terms of training speed. Almost all of them have been published in international peer-reviewed journals or conference proceedings. Corresponding implementations have also been released. As much as possible, we always keep the description of our innovative methods as generic as possible because we want to ease the design of any further derivation. Indeed, many directions can be followed to carry on with what we present in this dissertation. We list some of them in Chapter 7. te l-0 04 64 00 7, v er si on 1 15 M ar 2 01 0
منابع مشابه
Large Scale Machine Learning
Cette thèse aborde de façon générale les algorithmes d'apprentissage, avec un intérêt tout particulier pour les grandes bases de données. Après avoir for-mulé leprobì eme de l'apprentissage demanì ere mathématique, nous présentons plusieurs algorithmes d'apprentissage importants, en particulier les Multi Layer Perceptrons, les Mixture d'Experts ainsi que les Support Vector Machines. Nous consid...
متن کاملAlgorithmes rapides de boosting de SVM
Résumé. Les algorithmes de boosting de Newton Support Vector Machine (NSVM), Proximal Support Vector Machine (PSVM) et Least-Squares Support Vector Machine (LS-SVM) que nous présentons visent à la classification de très grands ensembles de données sur des machines standard. Nous présentons une extension des algorithmes de NSVM, PSVM et LS-SVM, pour construire des algorithmes de boosting. A cett...
متن کاملSélection de modèles par des méthodes à noyaux pour la classification de données séquentielles
Ce travail concerne le développement de méthodes de classification discriminantes pour des données séquentielles. Quelques techniques ont été proposées pour étendre aux séquences les méthodes discriminantes, comme les machines à vecteurs supports, par nature plus adaptées aux données en dimension fixe. Elles permettent de classifier des séquences complètes mais pas de réaliser la segmentation, ...
متن کاملSVM incrémental et parallèle sur GPU
Résumé. Nous présentons un nouvel algorithme incrémental et parallèle de Séparateur à Vaste Marge (SVM ou Support Vector Machine) pour la classification de très grands ensembles de données en utilisant le processeur de la carte graphique (GPUs, Graphics Processing Units). Les SVMs et les méthodes de noyaux permettent de construire des modèles avec une bonne précision mais ils nécessitent habitu...
متن کاملParallel computing for the finite element method
A finite element method is presented to compute time harmonic microwave fields in three dimensional configurations. Nodal-based finite elements have been coupled with an absorbing boundary condition to solve open boundary problems. This paper describes how the modeling of large devices has been made possible using parallel computation. New algorithms are then proposed to implement this formulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010